Precession electron diffraction, high-resolution microscopy and atom probe analysis of nano-size precipitates in Al-Zn-Mg industrial alloys

V. Hansen^a, A. Kverneland^a, R. Vincent^b, X.Z. Li^{cd}, K. Stiller^e and J. Gjonnes^c, ^aFaculty of Science and Technology, Stavanger University College, N-4068 Stavanger, Norway, ^bH.H.Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL UK, ^cCenter for Materials Science, University of Oslo, N-0439 Oslo, Norway, ^dCenter for Materials Research and Analysis, University of Nebraska, Lincoln, NE 68588-0113, ^eDepartment of Physics, Chalmers University of Technology, S-4196 Göteborg, Sweden

Keywords: aluminum alloys; electron crystallography; electron diffraction

Transmission electron microscopy is an excellent tool for characterization of the semi-coherent, metastable hardening precipitates embedded in aluminum alloys. However, structure solution by conventional electron diffraction is complicated, by double scattering via matrix reflections. This is overcome by the precession technique [1]. Composition is analyzed by the atom probe (APFIM) technique. The semi-coherent, diskshaped ca 3x5nm-size η' -precipitate on the $\{111\}_{Al}$ planes, which determines the strength of Al-Zn-Mg alloys is an intermediate stage in a decomposition sequence: supersaturated solid solution \rightarrow GP-zones \rightarrow η' \rightarrow η -MgZn₂ (stable). The η' - lattice is hexagonal: $c_{\eta'} = 2[111]_{Al} = 1.402$ nm, $a_{n'} = (1/2)[211]_{Al} = 0.496$ nm. High-resolution images revealed that structure proposed earlier from X-ray photographs [2] could not be retained; a model based on a structural unit similar to the stable Laves phase MgZn₂ was proposed instead. The composition of the unit cell Mg₄Zn_{10-x}Al_{4+x} was chosen, which is close to the atom-probe result with $x \sim 3-4$. Electron diffraction intensity data were collected by the precession technique, on film and imaging plates. Three-dimensional data sets obtained by merging 5 or 7 projections recorded on film or imaging plates covered 85% of allowed reflections inside 1Å. From systematic absences the space group P-6c2 (190) was assigned. Patterson and Fourier analysis confirmed basic features of the HRTEM model. Refinement results will be presented; the relation to other structures along the transformation path will be discussed.

- [1] Vincent, R. & Midgley, P.A. (1994), *Ultramicroscopy* **53**, 271-281.
- [2] Auld, J.H. & Cousland, S.McK. (1974). J Aust. Inst. Metals 19, 194-201