Topological information of the electron density distribution in systems. hydrogen bonded Enrique Espinosa, a,* Ibon Alkorta, b José Elguero^b and Elies Molins^c. ^aLIMSAG, UMR 5633, Université de Bourgogne, 6 bd. Gabriel, 21000 Dijon (France). ^bInstituto Química Médica (CSIC), C/ Juan de la Cierva 3, 28006 Madrid (Spain). Institut Ciència de Materials de Barcelona Campus UAB, 08193 (CSIC). Cerdanvola (Spain). **E-mail*: Enrique.Espinosa@u-bourgogne.fr

Keywords: electron density; topology; hydrogen bonding.

Using the topological properties of the experimental electron density distribution $\rho(\mathbf{r})$ observed in 83 hydrogen bonds [X-H···O (X=C,N,O)], we have related the total energy density observed at the bond critical point (H^{CP}) to the H...O interaction potential (U) by means of a proportional relationship $U \propto H^{CP}$. This function has been successfully checked against several physical and chemical properties and compared to Morse and Buckingham type potentials. Recently,² we have undertaken the theoretical study of $\rho(\mathbf{r})$ calculated for the isolated H···F interaction and for 79 X-H···F-Y complexes. The analysis of all these systems lead to three characteristic $\rho(\mathbf{r})$ regions for distances H···F ranging from weak van der Waals to strong covalent interactions. While the extreme regions are respectively associated to pure CS and SS interactions, the middle region is associated to the redistribution of $\rho(\mathbf{r})$ between those electronic states. The analysis carried out with the isolated H···F interaction has permitted to associate this transit region to internuclear geometries involved in the building of the H-F bonding molecular orbital. The interaction energies of X-H···F-Y pure CS interactions have been estimated by using the bond degree parameter (B.D. = H^{CP}/ρ^{CP}) and the $[F \cdots H \cdots F]$ proton transfer geometry has been associated to the local maximum of the electron kinetic energy density (G^{CP})_{max}.

References

 E.Espinosa and E. Molins J. Chem. Phys., 2000, 113, 5686.
E.Espinosa, I.Alkorta, J.Elguero and E.

[2] E.Espinosa, I.Alkorta, J.Elguero and E Molins *J. Chem. Phys.*, **2002**, 117, 5529.