Lattice aspects of crystal twinning. H. Grimmer, Laboratory for Neutron Scattering, ETHZ and PSI, CH-5232 Villigen PSI, Switzerland

Keywords: twinning; coincidence site lattices; Mallard's law

Assume that the two individuals forming a twin are related by a mirror reflection parallel to a rational plane $(h \ k \ l)$ or by a 180° rotation with axis parallel to a rational direction $[u \ v \ w]$. Mallard's "law" states that in both cases these elements can be complemented to a pair $(h \ k \ l)$, $[u \ v \ w]$ of rational elements, such that the angle between $[u \ v \ w]$ and the normal to $(h \ k \ l)$, called the obliquity δ , satisfies $\delta \leq 6^{\circ}$ and that the twin index Σ is a positive integer not larger than δ [1,2].

Discussing examples, especially of crystals with symmetries higher than orthorhombic, we shall show that this criterion is often satisfied for growth twins originating from a twinned nucleus. Growth twins formed by coalescence of two single crystals can better be described if stricter limits are imposed on δ and less strict ones on Σ . If $(h \ k \ l)$ is interpreted as the habit plane K_1 of a mechanical twin and $[u \ v \ w]$ as η_2 , the observed values of the shear show that the restriction on δ has to be relaxed at least for $\Sigma = 1$ [3].

- [1] G. Friedel, (1926). *Leçons de cristallographie*. Reprinted 1964. Paris: Blanchard.
- [2] Th. Hahn & H. Klapper, (2003). Twinning of crystals, in International Tables for Crystallography, Vol. D.
- [3] H. Grimmer & K. Kunze, *Twinning by reticular pseudo-merohedry in trigonal, tetragonal and hexagonal crystals* (submitted to Acta Cryst. A).