Crystal structure of the Zn/Co containing Adenylate Kinase from *D. gigas.*, José Trincão,\* Sergey Bursakov, José J.G. Moura, Isabel Moura and Maria João Romão, *REQUIMTE/CQFB*, *Departamento de Química*, *FCT*, *Universidade Nova de Lisboa*, 2829-516 Caparica, Portugal, Portugal. E-mail: trincao@dq.fct.unl.pt

Keywords: Adenylate kinase; Cobalt; Zinc

Adenylate kinase (AK) mediates the reversible transfer of phosphate groups from ATP to AMP. It contributes to the maintenance of a constant cellular level of ADP, necessary for energetic metabolism and nucleic acid synthesis. In contrast to the AK from Gram-negative bacteria, which requires only the presence of  $Mg^{2+}$  ion for this reaction, the enzyme from Grampositive organisms also harbours a  $Zn^{2+}$  (or  $Co^{2+}$ ) ion, believed to have a structural role. AK from *D. gigas* is a monomer in solution and has a molecular mass of 24.7 kDa<sup>[1]</sup>. Due to difficulties in obtaining a MR solution using models of AK from other organisms, the structure of AK from D.gigas was solved by MAD using the bound Zn as the anomalous scatterer. A single crystal was used to collect data to 2.1 Å at the Zn peak, at the edge and at a remote wavelength. The crystal belongs to space group I222, with unit cell  $\mathbf{a} = 39.6 \text{ Å}$ ,  $\mathbf{b} = 119.8 \text{ Å}$  and  $\mathbf{c} = 150 \text{ Å}$ . The structure was refined to a final R factor of 19.9 % ( $R_{free} = 23.4$  %). It shows a single molecule in the asymmetric unit. The crystal structure was used to confirm, correct and complete the available partial sequence of the AK from D. gigas.

Structural data will also be obtained for the Co-containing AK, as well as for complexes of the enzyme with substrate-analogues, which will help to gather a better understanding of the structural and catalytic properties of this class of adenylate kinases.

[1] Gavel, O.Y., Bursakov, S.A., Pina, D.G., Zhaden, G.G., Moura, J.J.G., Moura, I., Shnyrov, V.L. (2004) *Bioph. Chem.*, in press.