Modulations in complex structures – two case studies Lidin, Sven¹, Pay-Gomez, Cesar¹, Boström, Magnus² (1)Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, (2) MPI Chemische Physic fester Stoffe, Dresden

There is something very appealing about rendering complex approximations to incommensurately modulated structures simple by using the super space formalism to present them in a clear and succinct form. There are however cases when the basic structure itself is quite complex, and this makes analysis a little more involved. First of all, the solution of the underlying parent structure is far from straight-forward, and secondly, the identification of the primary cause of the modulation is more difficult. We present here two cases that present such problems, the structures of ht-Sb₂Zn_{3-x} and that of Ce₁₃Cd₅₈. The first structure belongs to a class of compounds that form between the zinc group metals and the pnictides. They typically consist of rigid pniktide frameworks and interstitial Zn and Cd, and the ordering of Zn/Cd forms complex commensurate superstructures. In the compound ht-Sb₂Zn_{3-x} the Sb network is modulated due to a slight icosahedral mismatch, and the combination of the two effects leads to a very complex arrangement indeed. The second compound, Ce₁₃Cd₅₈ is a ortho-hexagonal approximant to the stable binary CaCd_{5.7} type quasi crystals. Here the incommensuration is driven by two coupled mechanisms, the exchange of a Cd2 dumbbell by a single Ce atom, and the ordered partial occupancy of Cd₈ cubes.