On the Synthesis, Crystal Chemistry and Magnetic Properties of Rasvumite and Related Compounds.,

Herbert Boller, *Institut für Allgemeine und Anorganische Chemie, Universität Linz, Austria.* E-mail: herbert.boller@jku.at

Keywords: Rasvumite; intermediate valence compound; solid state synthesis

Rasvumite, KFe₂S₃, belongs to a group of rare iron bearing alkali sulphide minerals together with erdite, bartonite, djerfisherite and others occurring in mafic alkaline rocks on the Kola peninsula (Russia) or Coyote Peak in California (USA) [1]. KFe₂S₃ has been synthesized hydrothermally in microcrystalline appearance at relatively high temperatures of 400 - 500°C [2]. We succeeded, however, to prepare the compound by solid state synthesis from finely powdered KFeS₂, Fe, and S at 400 - 500 °C. The lattice parameters of the product (Cmcm, a = 9.047(4), b = 11.005(6), c = 5.422(2) Å) are almost identical with those given for the mineral [1]. By the same method we were able to prepare the new isotypic phases KFe₂Se₃ (a = 9.357(3), b = 11.551(4), c = 5.627(2) Å) and RbFe₂S₃ (a = 9.218(5), b = 11.203(5), c = 5.443(2) Å). These three materials are low temperature phases slowly decomposing above 450 °C into AFeX₂ + FeX (A: K, Rb; X: S, Se). On the contrary, isotypic RbFe₂Se₃ melts congruently at ~ 850 °C [3]. Rasyumite belongs to the family of naturally occurring or synthetic fibrous thioferrates having chains of edge-sharing [FeS₄] tetrahedra. Thus NaFeS₂.xH₂O (Erdite), KFeS₂ and TlFeS₂ (Raguinite) are composed of single chains, while Rasvumite has double [Fe₂S₃] chains. It is interesting to note that KFeS2, which has not yet been described as a naturally occurring mineral, appears to be most stable in laboratory experiments, and that NaFeS2.xH2O (Erdite) is not stable in the presence of K⁺ ions bearing solutions, forming readily a hydrated phase of KFeS2 by ion exchange. KFe₂S₃ forms a continuous synthetic series of mixed crystals, K_xBa_{1-x}Fe₂S₃, with isotypic BaFe₂S₃. This raises the question of valence change of iron, because formally iron should be in oxidation state +2.5 in KFe₂S₃ and +2 in BaFe₂S₃. Bond valence calculations and Mössbauer spectra [1, 4, 5], however, suggest an intermediate valence state close to +2.5 in both compounds and the mixed crystals. Below 90 K the Mössbauer spectra show strong magnetic splitting [5], but no magnetic order could be detected yet by neutron powder diffraction.

- J.R. Clark and G.E. Brown, American Mineralogist 65, 477 (1980)
- [2] G. Amthauer and K. Bente, Naturwiss. 70, 146 (1983)
- [3] K.O. Klepp, W. Sparlinek, and H. Boller, J. Alloys & Comp. 238, 1 (1996)
- [4] W.M. Reiff, I.E. Grey, A. Fan, Z. Eliezer, and H. Steinfink, J. Solid State Chem. 13, 32 (1975
- [5] M. Reissner, W. Steiner, and H. Boller, Hyperfine Interactions (C), 5, (2002)

Guidelines

(you may delete this text box once read)

The entire abstract should fit into a single column. Furthermore, it should conform to the style described here.

Title (10pt bold), authors (10pt), *affiliations* (10pt italic) and **Keywords** (9pt bold) should be entered using the start-up dialog boxes.

Troubleshooting: if on opening the template you did not see any dialog boxes, check that Word's macro security settings are not set to 'high'. Choose the menu combination 'Tools...Macro...Security...' in order to change Word's security setting to 'medium'; then close Word and re-open the template.

Subsequent editing of the title, authors, affiliations and keywords in the document should be performed with care to ensure that the style and layout are maintained. If necessary, these details can be regenerated using the *Re-run dialogs* button on the toolbar.

Troubleshooting: if there does not appear to be a toolbar containing the *Re-run dialogs* button, right-click in the toolbar area and select 'IUCr' from the list of available toolbars.

The **body text** of the abstract (9pt) should be a single paragraph.

References and figures (if any) should be restricted to those necessary for the comprehension of the abstract. References should be indicated by numbers in square brackets, [1], [2] *etc.*, in the text, and be listed at the end of the abstract. Figures should be placed at the appropriate point(s) in the text.

The toolbar buttons *Body text style*, *References style* and *Keywords style* are provided to assist in formatting the text (especially useful if text is cut and pasted from other documents). On clicking the button, the style will be applied to the paragraph in which the cursor is placed.