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During the method of least-squares a large normal matrix is
produced which has to be accumulated and inverted. This is
both expensive in computation time and storage. For small
structures this is usually insignificant, but time and storage
increase rapidly with the number of parameters being refined.
Improvements may be made by using sparse matrices, as not
storing zero elements reduces the memory footprint and
memory access during computation. Efficient storage of a
square matrix also depends on the ordering of the rows and
columns. The figure shows some preliminary work with sparse
matrices at different stages of the inversion process (rows).
Some different orderings of the normal matrix (columns) are
also shown. Near-zero elements have been omitted to
demonstrate the sparsity in the normal matrix. The structure
contains some large off-diagonal correlation elements due to
the asymmetric unit containing a pseudo-center. Inversion of
the matrix produces many more non-zero elements. The first
column shows the normal matrix which has not been
reordered. The parameters are ordered by adjacent atoms. It
can be seen that storing the inverted matrix sparsely would be
inefficient. Columns 2 and 3 show MATLAB reordered
normal matrices and the results of their inversion [1, 2]. The
results of these reorderings produce matrices which are
efficiently stored in sparse matrix form and thereby decreasing
the storage and the computation required.

The poster shows an evaluation of different orderings of the
normal matrix on crystallographic least-squares refinement
and the effect of elimination of near-zero elements on the
accuracy and convergence of the refinement.
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