Ring-Stacking and Ring-Laddering in the Organic Solid State

Andrew D. Bond

Department of Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.

The ring-stacking and ring-laddering concepts of structural inorganic chemistry^[1-6] may be applied to rationalise motifs observed for secondary ammonium halides R_2NH_2X (X = Cl, Br) in the organic solid state.

General examination of the directional preferences of $N^+\cdots X^-$ contacts in 166 crystal structures confirms that the shortest contacts (3.0–3.2 and 3.2–3.4 Å, X = Cl, Br) are $N^+-H\cdots X^-$ hydrogen bonds lying approximately along the directions of the N^+-H bond vectors. The next shortest $N^+\cdots X^-$ contacts display two preferred directions of approach: i) contacts in the distance range 3.2–3.5 (X = Cl) and 3.2–3.9 Å (X = Br) lie close to the $H-N^+-H$ plane, along the direction of the bisector of the $H-N^+-H$ angle; ii) contacts in the distance range 4.0–4.2 (X = Cl) and 4.0–4.4 Å (X = Br) lie close to the $H-N^+-H$ plane, along the direction of an axis extending to the backside of one the N^+-H bonds. Both directions of approach lead frequently to association of $R_2NH_2^+X^-$ ion pairs into laddered motifs. Stacking association is also observed, giving rise in one case to discrete cubanes and in several other cases to extended stacked-cube arrangements.

In each case, the distribution of $N^+ \cdots X^-$ contacts reflects a balance between the directional properties of the $N^+ - H \cdots X^-$ hydrogen bonds and (primarily steric) interactions between the R groups of the organic moieties. The ladder and stack motifs of the organic ammonium halides are in many cases directly comparable to those in alkali-metal amides, $[R_2NM]_n$, and information derived from the extensive organic sample provides insight into the motifs adopted by inorganic complexes.

^{1.} Ring-stacking: D. Barr, W. Clegg, R. E. Mulvey, R. Snaith & K. Wade, J. Chem. Soc., Chem. Commun., 1986, 295.

^{2.} Ring-laddering: D. R. Armstrong, D. Barr, W. Clegg, R. E. Mulvey, D. Reed, R. Snaith & K. Wade, *J. Chem. Soc., Chem. Commun.*, **1986**, 869.

^{3.} Reviews: K. Gregory, P. von R. Schleyer & R. Snaith, Adv. Inorg. Chem., 1991, 37, 47.

^{4.} R. E. Mulvey, Chem. Soc. Rev., 1991, 20, 167.

^{5.} R. E. Mulvey, Chem. Soc. Rev., 1998, 27, 339.

^{6.} A. Downard & T. Chivers, Eur. J. Inorg. Chem., 2001, 2193.