
## Rigid molecular hosts as building blocks for network structures

Michaele J. Hardie, Ruksanna Ahmad, Christopher Sumby

School of Chemistry, University of Leeds, Leeds LS2 9.IT. UK

## Cyclotriveratrylene, Hydrogen Bonding, Coordination Polymers

Cyclotriveratrylene (CTV) is a rigid bowl-shaped molecule capable of acting as a molecular host for large guests such as fullerene and carborane.1 Supramolecular assemblies of cyclotriveratrylene show interactions beyond simple hostguest chemistry, with the dimethoxy moieties acting as hydrogen bond acceptors and/or chelating ligands. Complicated discrete or infinite network structures may result in the solid state. Examples include the highly complex hydrogen bonded structure  $[Eu(H_2O)_9]_{1.5}(CTV)_6(CH_3CN)_{5.5}(H_2O)_{7.5}[Co(C_2B_9H_{11})_2]_{4.5}$ and the series of group-1 coordination polymers formed with halogenated mono-carbaboranes where both the anion and CTV act as ligands.<sup>3</sup> [Na(H<sub>2</sub>O)(CB<sub>11</sub>H<sub>6</sub>Br<sub>6</sub>](CF<sub>3</sub>CH<sub>2</sub>OH) has a helical chain structure, while [Rb(CTV)(CB<sub>11</sub>H<sub>6</sub>Br<sub>6</sub>)(H<sub>2</sub>O)] and [Cs(CTV)(CB<sub>11</sub>H<sub>6</sub>Br<sub>6</sub>)(CH<sub>3</sub>CN)] shows a 2D coordination polymer of (6,3) topology. CTV is not a good ligand however, and does not allow for any degree of control over network topology. We are extending the CTV framework by adding functional groups capable of coordination to transition metals, for instance the hexa(2-methylpyridyl)CTV shown below. Hydrogen bonded network structures of CTV and coordination polymers with CTV or extended CTV will be discussed.



## hexa(2-methylpyridyl)CTV

- [1] M. J. Hardie, C. L. Raston, Chem. Commun. 1999, 1153
- [2] R. Ahmad, I. Dix, M. J. Hardie, Inorg. Chem. 2003, 42, 2182
- [3] R. Ahmad, A. Franken, J. D. Kennedy, M. J. Hardie, *Chem. Eur. J.* 2004, in press.