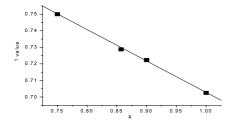
Modulated phases in the LiCdVO₄-LiCd₄(VO₄)₃ system. Relationships with the olivine-type structure. Zúñiga F. J. ^a Ben Yahia ^{A.}, Gaudin E. ^b, Darriet J. ^b, Schönleber A. ^a and Perez-Mato J. M. ^a. ^a Departamento de Fìsica de la Materia Condensada, Facultad de Ciencias, Universidad del Pais Vasco, Apdo 644, 48080 Bilbao, Spain. ^b Institut de Chimie de la Matière Condensée de Bordeaux (I.C.M.C.B-CNRS) U.P.R. 9048., 87, Av Dr. Schweitzer, 33608 Pessac Cedex, France. Email: wmpzulaj@lg.eh.es Keywords: Modulated; incommensurate; batteries


Olivine-type compounds are the subject of great interest as candidate materials for lithium-ion batteries since the discovery of insertion-deinsertion properties of lithium in LiFePO₄[1]. The ideal formula unit of olivine-type compounds is AA'BO₄. The structure can be derived described in terms of hexagonal stacking of closed packed O₄ layers with A, A' cations and B cations in two octahedral sites and one tetrahedral site, respectively.

A solid solution (1-x)LiCdVO₄ - xLi_{1/3}Cd_{1/3}□_{1/3}CdVO₄ has been observed for $0 \le x \le 1$. Two domains of the solid solution have been distinguished. The first one for $0 \le x \le 0.6$ corresponds to the LiCdVO₄ sub-structure of the Na₂CrO₄-type [2]. For $0.7 \le x \le 1$ satellites peaks are observed which correspond to a modulated structure.

LiCdVO₄ and LiCd₄(VO₄)₃ [3] are isostructural to Na₂CrO₄ but in the case of the last compound some extra peaks have been observed in the diffraction pattern. LiCdVO₄ (x=0) crystallizes in Cmcm space group with a=5.911 , b = 8.975 and c=6.513 Å. In the structure the cadmium atoms occupy the octahedral site, lithium and vanadium atoms are in tetrahedral sites. The structures in the domain $0.7 \le x \le 1$ have been solved for x= ${}^{3}\!/_{4}$, 6/7 and 1. All these phases are modulated with an one-dimensional incommensurate **q**-vector **q** = γ **c*** and γ values of 0.75, 0.733 and 0.703 respectively. The superspace group is Xmcm(00 γ) where X stand for (${}^{1}\!/_{2}$, ${}^{1}\!/_{2}$, 0, ${}^{1}\!/_{2}$) centring. A linear relation between the **q**-vector and the composition x has been evidenced (see figure).

According to the general formula $\text{Li}_{1.2x/3}\text{Cd}_{x/3}\square_{x/3}\text{CdVO}_4$ of the solid solution, the structures shows a different distribution of $\text{Li/Cd/}\square$ on the tetrahedral A-type position. The main result is a strong occupation modulation of lithium and cadmium in one tetrahedral site, which can be described by a crenel function. This occupancy modulation is associated to appears together with a displacive modulations. The comparison with the structural results of the commensurate case with x=3/4 confirms a disordered model for the $\text{Li/Cd/}\square$ distribution.

These two types of modulation induce the incommensurability of the structure.

^[1] Pahdi,, A. K., Nanjundaswamy K., S., and Goodenough, J. B. (1997) J. Electrochem. Soc., 144, 1188.

^[2] Niggli A. (1954). Acta Cryst., 7, 776.

^[3] Ben Amara, M., PhD thesis, (1979), Université de Bordeaux 1.