Unexpected Solid State Fluorescence of an Organic Pigment. Martin U. Schmidt ^a, Juste E. Djanhan ^a, Thomas Metz ^b, Michael Bolte ^a; (a) Institute for Inorganic and Analytical Chemistry, University of Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt am Main, Germany; (b) Clariant GmbH, Div. Pigments and Additives, SU-TIM, Research, G834, D-65931 Frankfurt am Main, Germany.

Keywords: Fluorescence; Solid State Fluorescence; Pigments.

According to theory, organic compounds can show fluorescence in the solid state only if the chromophor-chromophor distances are large (6 - 8 Å, for π - π * transitions) [1]; otherwise the vibrational coupling between neighbouring molecules leads to enhanced electron-phonon coupling, and the fluorescence is quenched.

To prove this theory the compounds 1 - 4 were synthesized, crystallized, and their crystal structures and fluorescence behaviour were determined. Surprisingly, compound 3 shows strong solid state fluorescence, although the chromophor-chromophor distance between the centres of molecules is 3.863 Å only, the interplanar distance between neighbouring molecules being 3.548 Å only. The reason for this unexpected fluorescence is not understood yet.

Compound No.	1	2	3	4
Fluorescence in solution:	strong	no	strong	no
Solid state fluorescence:	strong	no	strong	no
Chromophor-chromophor distance ^a [Å]:	6,114	7,007	3,863	6,085
Space group:	$P2_1/c^b$	$P2_{1}/c$	C2/c	$P2_1/c^b$
Z	2	2	4	2

- a) Distance between the centres of neighbouring molecules
- b) 1 and 4 are isostructural.
- H. Langhals, T. Potrawa, H. Nöth, G. Linti, Angew. Chem. 101 (1989), 497-499; Angew. Chem. Int. Ed. Engl. 28 (1989), 478-480.