Application of a dual-source Weissenberg type diffractometer, H. Borrmann, H. Zhang*, Yu. Prots, M. Schmidt and W. Schnelle, *Max Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187 Dresden, Germany.* E-mail: hzhang@cpfs.mpg.de

Keywords: Dual-source diffractometer; High resolution imaging plate; Zinc ferrite

An additional X-ray source along with a Johansson type monochromator is installed on a Weissenberg type diffractometer with a large imaging plate detector (Rigaku R-Axis RAPID) [1]. This enables two sets of intensity data to be collected at the very same sample setting but using two different X-ray beams, i.e. beams of different wavelengths and/or different beam shapes. For example, an optimal refinement on the structure parameters of the hydrogen atom in $Ca_2[BN_2]H$ (space group *Pnma*, No. 62, a = 9.2015(8) Å, b = 3.6676(2) Å, c = 9.9874(12) Å, Z = 4) has been investigated by analyzing the data collected using various primary beam sources. Moreover, additional specific information can be gained from data collected from a resonance experiment applying a wavelength very close to an absorption edge of a compositional element. We have tried to analyze the cation distribution in zinc ferrite (ZnFe₂O₄) [2] using high resolution data along with such a resonance experiment applying Co K_{β} radiation.

Borrmann, H., Armbruester, M., Burkhardt, U., Leithe-Jasper, A.,
Zhang, H. & Grin, Yu. (2002). *Acta Cryst.* A58, C261.
O'Neill, H. St. C. (1992). *Eur. J. Mineral.* 4, 571-580.