
Direct observation of charge ordering in (EDO-TTF)₂PF₆, Shinobu Aoyagi, ^{a*} Kenichi Kato, ^b Akira Ota, ^c Hideki Yamochi, ^d Gunzi Saito, ^c Hiroyoshi Suematsu, ^b Makoto Sakata ^a and Masaki Takata ^b, ^aDepartment of Applied Physics, Nagoya University, Nagoya 464-8603, Japan, ^bSPring-8/JASRI, Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan, ^cDivision of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, and ^dResearch Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. E-mail: aoyagi@mcr.nuap.nagoya-u.ac.jp

Keywords: charge ordering; organic conductors; charge density study

The metal-insulator (MI) transition in an organic conductor (EDO-TTF)₂PF₆ (C₁₆H₁₂S₈O₄PF₆) has been considered as the particular example which shows the cooperative action of Peierls distortion, charge ordering and anion ordering together with a molecular deformation. [1] The transition appears at $T_{\rm MI}$ = 280 K, accompanying the changeover from parato diamagnetism. The charge ordering of EDO-TTF donor molecules in the insulating low-temperature phase has been pointed out from the comparison of the bond length and the Raman spectra. In this presentation, we report direct evidence for an ordering of (EDO-TTF)⁺ and (EDO-TTF)⁰ visualized in the (EDO-TTF)₂PF₆ charge density distributions. The charge density distributions were obtained from the synchrotronradiation (SR) powder-diffraction data by a combination of the MEM (maximum entropy method) and the Rietveld method. [2] The SR experiment was carried out with the large Debye-Scherrer camera at SPring-8 BL02B2. The equi-chargedensity surface at 260 K is shown in Figure with a level of 0.7 eÅ-3. The charge on each donor molecule, coulombic interactions between PF₆ anions and donor molecules, and the hole concentration on each sulfure atom in (EDO-TTF)⁺ were revealed by the charge densities. The charge ordering of donor molecules was observed with a $2k_F$ periodicity ($2k_F$: nesting vector of Fermi surface). As a result, the [0,0,+1,+1,...] charge-ordering is formed along the nesting vector. Changes in the bonding during the MI transition that is dimerization of (EDO-TTF)⁺ molecules also became evident, which can explain the existence of the insulator singlet state. In addition, a bonding between the donor molecules that suggests quasi 1D properties was found in the charge density of metallic phase.

[1] Ota, A., Yamochi, H. & Saito, G. (2002). J. Mater. Chem. 12, 2600-2602.

^[2] Takata, M., Nishibori, E. & Sakata, M. (2001). Z. Kristallogr. 216, 71-86.